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We examine the stability of particle orbitsin aternating solenoid lattices. We show
that the eguations of motion reduceto aform of the Mathieu equation. Stable orbits
are determined by particular values of the parameters of the Mathieu equation. These
parameters are then rel ated to the momentum of the particle andthefield strength and
period of the dternating solenaid lattice Stability predictions are shown to agree
exadly for aperfed sinusoidall y-varying magnetic field. The stability predictions do
not work for the dternating solenoid magnetic field pattern used in the muoncaolli der,
except for the fundamental resonance @ndtion.



1 Introduction

An aternating solenoid lattice has been designed by Pamer for transverse amittance @aling of
muon beans at amuoncolli der [1-3]. The intentionis to scde this lattice for use over a range of
incident transverse emittances that vary by afador of abou 300. Thus the question arises of how to
properly transform the lattice parameters in such away as to oltain efficient codling, while & the
same time avoiding unstable regimes that are known to exist in aternating solenoid lattices [4].

2 Relation to the Mathieu equation

Theradia equation d motion d a dharged particlein an eledromagnetic field isgiven in cylindricd
coordinates as

F-rg’ = m_e-,r(Er'“l.:'BZ) @)

For the cae wnsidered here E, is 0. The particle develops an angular momentum from crossng the
fringefield a the end d the solenoid given by
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We can use thisrelationto oltain the a&imuthal velocity
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Note that thisis aso the solution d the ¢ equation d motionin cylindrica coordinates when there
isno azimuthal acceeration. Substituting Eq. 3 kadk into Eq. 1,wefind
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Now approximate the field pettern in an alternating solenoid lattice with the leading term of a
Fourier expansion

B, = B, sinkz (5)

Substituting Eq. 5 ad into Eq. 4gives
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Using the relations
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we can transform Eq. 6into the form
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Finally, the transformation
u=kz (20
alows usto write Eq. 8as[4,6]
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This can be cmpared with the canonicd form of the Mathieu equation[7]
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Thuswe can identify the Mathieu parameters as
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If we usetherelation

where }, isthe spatia period d the magnetic field, we can spedfy the Mathieu parameter q in terms
of the momentum of the particle and the magnetic field parameters as
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It is known that the Mathieu equation can have aperiodic solution if the parameters {q, a} of the
problem liein cetain restricted regions of the parameter space. The boundxries of the stable regions
are determined by the dharaderistic values{a,, b} of the Mathieu equation. Fig. 1 shows a plot of
these dharaderistic values asafunction d q.

Fig.1 Charaderistic values of the Mathieu equation. The solid (dashed) line shows
the charaderistic value a (b,). The dotted line gives the @nstraint between the
parameters a and qfor this problem.



Fig. 2shows aportion of the parameter spacein greaer detail . Periodic (i.e. stable) solutions exist
in regions of the plot where [6]

an < a(q) < bn-l (16)
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Fig.2 Charaderistic values of the Mathieu equation in greaer detail. The solid
(dashed) line shows the dharaderistic value a (b,). The dotted line gives the
constraint between the parameters a and gfor this problem.



We have tested this prediction by trading particles through afield given by

where |, and |, are modified Bessl functions. Thisfield pattern satisfies Maxwell’ s equations. The
particle momentum was fixed at 200MeV/c, the period d the magnetic field was 2 m and the total
length of latticewas 30 m. Theinitial particle position (transverse momentum) was sleded from
agaussan dstribution with a standard deviation d 1 cm (10 MeV/c). A particle was considered to
be lost if the radius ever excealed 15cm. The magnetic field strength B, was chosen to give a
parameter q values in the center of alternating stable and urstable bands. Transmisgons were
determined using 500 tradks. Results using the Monte Carlo tradking code ICOOL are shown in

B,(r,2) = B,sin(kz-a) I (kr)
B,(r,2 = B,cos(kz-a) I,(kr)

Table 1.
Table 1 Transmissonthrough sinusoidal lattice
o} theory B,[T] Tr [%]
0.179 S(table) 3.544 100
0.536 U(nstable) 6.133 0
1.429 S 10.02 100
2.321 U 12.76 0
3.93 S 16.61 100
5.36 U 19.40 0
7.50 S 22.94 100
9.46 U 25.77 0
12.23 S 29.30 100
14.46 U 31.86 0

We seethere is perfed agreement with the predicted stability for the pure sinusoidal | attice




3 Wawength of particle s betatron motion

From Eqg. 6 we seethat the radial motionis given by the equation
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In genera the particles undergo compli cated trgjedories through the lattice Let us assume however
that the motion can be broken into adow betatron motion combined with afast motion charaderized
by the lattice periodicity [8].
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This $houd be areasonable asumption so long as the betatron wavelength is large compared with
the lattice period. Substituting Eq. 19into Eq. 18,wefind

s
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Now asaume z is a linea function d time. If we take the time average of Eqg. 20, the term
propationa to S gives afador of Y%, while the other terms multiplied by S or C averageto 0. Then
Eq. 20reducesto
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Since by definition the solution d the slow equation cefines the betatron motion, we relate
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The spatial period /A of the betatron motionis then given by

A = 2’_‘_e‘/g B£
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where in the second equation the units are { m, GeV/c, T}.
4 Stability of the baseline alternating solenoid field

Theadua B, magnetic field pattern for the 15T, 3m period, dternating solenaid transverse ading
sedionis fiowninFig. 3 asafunction d z.
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Fig. 3 Longitudinal field in the muon collider alternating solenoid solution as a
function d z.



Significant deviations from a pure sine wave were required in arder to match the beam from one
solenoid to the next and to oltain reasonable aadling fadors in the cmmplete system. A Fourier
decompasition of the field petternis siown in Fig. 4. The dominant amplitude occurs as expeded
at afrequency of 1/3 m, bu the pattern has a significant harmonic content.
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Fig. 4 Fourier decompaosition d the muon colli der alternating solenoid magnetic
field.



We have dhedked the transmisgon davn 30m of thislatticeusing the mde ICOOL. For convenience
the pe&k magnetic field was fixed at 15T and the period d the magnetic field was 3 m. The initia
particle position (transverse momentum) was sleded from a gaussan distribution with a standard
deviation of 1 cm (15 MeV/c). A particle was considered to be lost if the radius ever exceealed 11
cm. The particle momentum was chosen to give aparameter g values in the center of alternating
stable and urstable bands. Transmissons from 400 tradks are shown in Table 2.

Table 2 Transmisgonthrough AS 15T short lattice

o} theory p[ GeVic] Tr [%]
0.179 S(table) 1.269 100
0.536 U(nstable) 0.733 0
1.429 S 0.449 93.8
2.321 U 0.352 99.0
3.93 S 0.271 93.0
5.36 U 0.232 99.8
7.50 S 0.196 99.0
9.46 ) 0.175 98.8
12.23 S 0.153 98.0
14.46 ) 0.141 97.3

We seethat, apart from the first predicted urstable value & q = 0.536,there is no longer any
correlation of the transmisgon through the lattice with the predicted stable and urstable regions.
There ae regions where the transmisson has minor dips to ~93%. Apparently the harmonic content
of the magnetic field is 4rong enough to smea out the predse relationships among the variables
required to maintain the unstable resonances. In amuoncolli der there will be alditional sources of
smeaing from stochastic processs in the woling materials and from interadions with the rf
system. Thisisgood rewsfor the design of a @dling stage, sinceit means that, ather than avoiding
thefirst strong resonance, we can optimize the parameters {p, B, A} entirely in terms of the @oling
performance
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5 Comparison with resonance onditions

We can rewrite Eq. 15as

B
o . 8T 5 - 838 /9 (25)
e

wherethe unitsare{ T, m, GeV/c}. The central stable and urstable values of this quantity are
stable ={ 35.5, 100.2, 166.1, 229.5, 293.1, 363.3, ... }
unstable ={ 61.3, 127.7, 194.0, 257.7, 318.7, ... }

Intuitively, we exped resonant lossof particles when a particle orbit takes the same path through
each magnet in the lattice This ocaurs when an integer number of particle betatron wavelengths fit
exadly in aperiod d the lattice or

L=nA (26)

where nisan integer. Using Eq. 24for A&, we can write thisas
AB,
Y

= 592 n (27)

Resonant lossof particles would then occur for
unstable ={59.2, 118.4, 177.6, 236.8, 296.0, 355.2, ... }

It is interesting that this sequence gets increasingly out of phase from the one from the Mathieu
equation. By thefifth valueit predicts an urstable resonance d alocdion rea the center of astable
band of the Mathieu equation. Recdl that Table 1 showed perfed transmisgonfor this band for a
pure sinusoidal magnetic field. Thisis aimost certainly caused by the fail ure of Eq. 24to give an
acarate value for A for these higher order resonances.
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